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ABSTRACT 

A 3-fold Pfister form is associated to every involution of the second kind 
on a central simple algebra of degree 3. This quadratic form is associ- 
ated to the restriction of the reduced trace quadratic form to the space 
of symmetric elements; it is shown to classify involutions up to conjuga- 
tion. Subfields with dihedral Galois group in central simple algebras of 
arbitrary odd degree with involution of the second kind are investigated. 
A complete set of cohomological invariants for algebras of degree 3 with 
involution of the second kind is given. 

1. I n t r o d u c t i o n  

Let B be a central simple algebra over a field K with an involution c~ of the second 

kind and let F be the fixed subfield of K. Let Trd be the reduced trace and Nrd 

the reduced norm of B. The restriction Qo of the trace form Q: (x, y) F-~ Trd(xy) 

to the F-space (B, c0+ of symmetric elements of B is a quadratic form with values 

in F. It is an invariant of a and the aim of this paper is to study this invariant. 

We first describe the general form of Qo for algebras of arbitrary odd degree and 

then restrict our attention to central simple algebras of degree 3. 

Consider a cubic @tale F-subalgebra L C (B, (7)+. The restriction of the trace 

form to L is nonsingular, hence we have an orthogonal decomposition: 

(B, a)+ = L l V. 

We give an explicit description of the restriction of the form Qo to V, using 

a special case of a construction introduced by T. Springer [19], in connection 

with exceptional Jordan algebras, and generalized by Petersson-Racine [11] to 

algebras of degree 3. Our next goal is to show that the trace form Qo determines 

the involution up to isomorphism. As a consequence we get a parametrization of 

all involutions of the second kind on a central simple algebra of degree 3 which 

leave elementwise invariant a given cubic separable subalgebra. We also associate 

a 3-fold Pfister form ~r(B,a) to Qa, which determines a up to isomorphism, 

and characterize the class of involutions for which this 3-fold Pfister form is 

hyperbolic. The existence of such involutions, which we call distinguished, follows 

from Springer's construction, but is also related to a crossed product construction 

given by A. A. Albert [2]. A distinguished involution is characterized by the fact 
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that  the space (B, 0)+ contains up to isomorphism every cubic @tale F-subalgebra 

of B. 

In the last section, we use Galois cohomology and symbols to analyze ~tale 

subalgebras of dihedral central simple algebras. As applications, we get on one 

hand different proofs of previous results of the paper and, on the other hand, we 

show that  a dihedral algebra of degree 2n, n odd, is cyclic if a quadratic extension 

of F contains a primitive nth-root of 1 (see Corollary 30 for the precise statement).  

This is due to L. Rowen and D. Saltman [15] if F contains a primitive nth-root 

of 1. As a last application, we give a complete set of cohomological invariants for 

algebras of degree three with involution of the second kind. 

ACKNOWLEDGEMENT: The second author is indebted to H. P. Petersson for 

useful comments on the subject. 

2. Some general results 

Throughout the paper, B denotes a central simple algebra over a field K of 

characteristic different from 2 and g denotes an involution of the second kind on 

B, i.e. a map a: B ~ B such that  

+ y )  = +  (xy) = = x 

for all x, y E B, and a[K ~ Ig. We let F denote the subfield of K elementwise 

invariant under a and denote by - :  K , K the restriction of a to K.  

Under a scalar extension of F,  the field K - -  hence also the algebra B - -  may 

split into a direct product of two factors. Therefore, we shall also allow K to be 

a split quadratic ~tale F-algebra: 

K = F x F .  

In that  case, B = A x A t for some central simple F-algebras A, A t which are ex- 

changed under the involution a. Therefore, there is an isomorphism of K-algebras 

with involution (i.e. an isomorphism which commutes with the involutions): 

(B, a) _ (A x A ~ s) 

where A ~ is the opposite algebra of A and s is the switch involution: 

op op ) - -  ).  



302 D.E. HAILE, M-A. KNUS, M. ROST AND J-P. TIGNOL Isr. J. Math. 

Abusing the terminology, we shall also consider (B, a) as a central simple algebra 

with involution in this case. (It is indeed simple as an algebra-with-involution: 

see Jacobson's definition in [8, p. 208].) 

We let a �9 F • be such that  K = F(x /a )  = F [ X ] / ( X  2 - a). In particular, we 

have a �9 F x2 if K = F x F. 

Let (B, a )+  denote the F-vector space of a-symmetric  elements: 

(B, = (b �9 B: a(b) = b}. 

We denote by Qo the restriction to (B, a )+  of the reduced trace quadratic form: 

Qo(x) = TrdB(x 2) for x �9 (B,a)+. 

For any u �9 (B, or)+ n B x , a '  = Int(u) o a is again an involution of the second 

kind of B and conversely, if a, a I are involutions of the second kind of B, there 

exists u �9 (B, a )+  n B x such that  a' = Int(u) o a. Let (u}B be the B-hermit ian 

form on B (as a right B-module)  given by 

(u)B(x,  y) = a (x )uy ,  

for u �9 (B, ~)+ N B • and x, y �9 B. A right B-module automorphism rv: x H 

vx, v �9 B • of B is an i s o m e t r y  (UllB -% (U2)B i f a (v )u2v  = ul and is a 

s i m i l a r i t y  if there is A �9 F • such that  Aa(v)u2v = ul. 

LEMMA 1: L e t u l , u 2  �9 ( B , a ) + n B  • a n d l e t a i = I n t ( u i )  oa.  Then 

(1) An isomorphism (B, crl) -% (B, a2) induces an isometry Qol -% Qo2. 

(2) (B, crl) and (B, a2) are isomorphic (as K-algebras with involution) i f  and 

only i f  the hermitian spaces (ul>B and (U2)B are similar. 

Proo~ (1) If Int(v): (B, a l )  -% (B, a2) is an isomorphism, then Int(v)[(B, al)+]  

= (B, a2)+ and 

Qo~ ( vxv-1,  vy v - l )  = Trds (vxy  v - l )  = Qol (x, y) 

for x, y E (B, a)+.  

(2) The automorphism Int(v) of B is an isomorphism (B, al)  -% (B, a2), if and 

only if a2(vxv -1) = val (x)v  -1 for all x �9 B, if and only if u2 = Avula(v)  for 

some A �9 F x , hence ( u l / s  and (u2/B are similar. Conversely, any such similitude 

induces an isomorphism (B, a l )  -% (B, a2). | 
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Let B = Mn(K) be split and let T(Xij) = ( x i j )  t,  where t is transpose and 

x ~ �9 is conjugation on K. Any u e (Mn(K), v)+ is a hermitian matrix, hence 

there is v C GLn(K)  such that  a(v )uv  = a = d i ag (a l , . . .  ,an) ,  ai E F • Thus 

any involution of Mn(K) of the second kind is isomorphic to an involution of the 

form a -- Int(a) o V with a = d i a g ( a l , . . . ,  an),  ai e F • 

Let ha = ( a l , . . . , a n ) g  be the hermitian form on K n determined by 

d i a g ( a l , . . . , a n ) ,  i.e. ha(x , y )  = ~ i a ~ y l  = ~tay, x , y  E K n. Any isometry 

ha -% ha, of the K-space K n can be viewed as an isometry (a}M~(g) -% (a')M~(K) 

of the Mn(K)-space Mn(K).  

For a l , . . . , a n  E F x, we denote by ( a l , . . . , a n )  the quadratic form on F n 

determined by d i a g ( a l , . . . ,  an),  and by ( ( a l , . . . ,  an)) the n-fold Pfister form: 

((0:1, . . . ,  an>) ----- <1,--al)  . . . . .  <1,--an>. 

The next proposition follows by straightforward computation. 

PROPOSITION 2: Let K = F(v/-a). For a -- d i a g ( a i , . . . , a n )  C Mn(K) and 

a -- Int(a) o T we have 

Qo _~ n(1) _1_ (2). ((a)}. (J-l<_i<j<n (a la j ) ) .  

In order to get a similar result for arbitrary central simple algebras of odd 

degree, we first prove: 

LEMMA 3: Let L / F  be a field extension of  odd degree and let q be a quadratic 

form over F.  Let also q i  denote the quadratic form over L derived from q by 

ex tending  scalars to L, and let a E F x \ F x 2. I f  q i  ~-- ((a)) " h for some quadratic 

form h over L, o f  de terminant  1, then there is a quadratic form t o f  de terminant  1 

over F such that 

q ((a)). t 

Proof" Let K = F(x /~  ) and E - L . K  -- L(x/~ ). Let also qa, denote an 

anisotropic form over F which is Witt-equivalent to q. The form (q~,)E is Witt-  

equivalent to the form (((a)) - h)E, hence it is hyperbolic. Since the field extension 

E / K  has odd degree, Springer's theorem on the behaviour of quadratic forms 

under field extensions of odd degree [16, Theorem 2.5.3] shows that  (qan)K is 

hyperbolic, hence, by [16, Remark 2.5.11], 

qan = ((a/l" to 
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for some quadrat ic  form to over F .  Let dim q = 2d, so tha t  dim h -- d, and let w 

denote the Wi t t  index of q, so tha t  

(1) q _~ wH _1_ ((a)/�9 to, 

where H is the hyperbolic plane. We then have d imto  -- d - w, hence 

de tq  = ( - 1 )  ~ ( -a )  d -~ .  F • �9 F X / F  • 

On the other  hand, the relation qL ~-- ((al) " h yields: 

detqL = (--a) d. L • E L X / L  x2. 

Therefore, a ~ E F • becomes a square in L; since the degree of L / F  is odd, this 

implies tha t  a ~ E F • hence w is even. Lett ing tl  = ~ H  _L to, we then derive 

from (1): 

q N ( ( a ) ) .  t l .  

I t  remains to prove tha t  we may modify tl so as to satisfy the determinant  

condition. Since d i m t l  -- d, we have modulo the square I2F of the fundamenta l  

ideal of the Wi t t  ring of F :  

(((--1) d(d-1)/2 dettl}} if d is even, 
t l  = ((-1)  d(d-1)/2 det t l)  if d is odd. 

We may  use these relations to compute  the Clifford algebra of q - ((all �9 tl (up 

to Brauer-equivalence): in bo th  cases we get the same quaternion algebra: 

C(q) N (a, ( -1)  d(d-1)/2 det tl)F. 

On the other  hand, since det h = 1 we derive from qL ~ ((al) " h: 

C(qL) "~ (a, (--1)d(d-1)/2)L. 

Therefore, the quaternion algebra (a,  d e t t l ) F  is split, since it splits over the 

extension L / F  of odd degree. Therefore, if 5 C F • is a representative of det  tl C 

F• / F  • we have 

E nK/F(K• 

Let ~ E F • be a represented value of t l ,  so tha t  

tl  t2 • 
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for some quadratic form t2 over F, and let 

t = • 

Then 

det t  = 5 . d e t t l  = 1. 

On the other hand, since f is a norm from the extension K / F  we have 

hence 

t __ t l  q. . 

PROPOSITION 4: Let 13 be a central simple K-algebra of  odd degree n = 2 m -  1 

with an involution a of the second kind. There is a quadratic form qo of dimension 

n(n - 1)/2 and determinant 1 over F such that 

Qo - n (1) _k (2). ((a)) .qo. 

Proos Suppose first K = F x F. We may then assume (B ,a )  = (A • A~ 

where s is the switch involution. In that case 

(B, a)+ = {(a, a~ a �9 A} -~ A, 

and Qo is isometric to the reduced trace quadratic form on A. Since a �9 F x 2, we 

have to show that this quadratic form is Witt-equivalent to n(1). By Springer's 

theorem, it suffices to prove this relation over an odd-degree field extension. Since 

the degree of A is odd, we may therefore assume A is split: A -- Mn(F). In that 

case, the relation is easy to check. (Observe that the upper-triangular matrices 

with zero diagonal form a totally isotropic subspace.) 

For the rest of the proof, we may thus assume K is a field. Let D be a division 

K-algebra Brauer-equivalent to B and let 7: D , D be an involution of the 

second kind on D. Let also L be a field contained in (D, T)+ and maximal for 

this property. The field E = L �9 K is then a maximal subfield of D, otherwise 

the centralizer CDE contains a symmetric element outside E, contradicting the 

maximality of L. We have [L : F] = [E : K] = deg D, hence the degree of L / F  

is odd, since D is Brauer-equivalen~ to the algebra B of odd degree. Moreover, 

the algebra 

B | 1 7 4  
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splits, since E is a maximal subfield of D. By Proposition 2 the quadratic form 

[Qa]L obtained from Qo by scalar extension to L has the form 

(2) [Q~]L ~- n (1) _L {2}. ({a}} - h, 

where h ~-II<i<j<n (C~i(~j) for some OLl,... , oL n E L • Therefore, the Wit t  index 

of the form [Qo]L _k n ( -1 )  is at least n: 

w([Qo]L A_ n {-1))  > n. 

By Springer's theorem the Wit t  index of a form does not change under an odd- 

degree scalar extension. Therefore, 

w(Q~ A_ n { - 1 ) )  >_ n, 

and it follows that  Qo contains a subform isometric to n {1}. Let 

Q z ~ - n ( 1 )  A-q 

for some quadratic form q over F. Relation (2) shows that  

(2). h. 

Since det h = 1, we may apply Lemma 3 to the quadratic form (2) �9 q and get a 

quadratic form qo over F,  of determinant 1, such that, 

(2} .q ~ ((a)) - qo, 

hence 

Qo _~ n{1) • (2). ((a)).qo. | 

We conclude with a result which will be used in the next section for algebras 

of degree 3. 

LEMMA 5: Let L C ( B , a ) +  be dtale of  dimension n over F and let R = 

L |  L |  K .  Then B is a free R-module of  rank one via left and right 

multiplication; the action is equivariant with respect to the involution cr on B 

and the action ~: R ~ R given by a(A | # | x) = # | A | $. In particular we 

have an induced action of  R ~ on (B, a)+.  
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Proof: We may assume that  F is separably closed, that  

B = Mn(F)  • Mn(F)  ~ 

a is the switch involution, and 

L = {(d, d~ d is diagonal}. 

Let L ~ be the set of diagonal matrices in Mn(F).  We have 

Mn(F)  = L I @ x L  t @ . . .  |  ~, 

with x a permutat ion matr ix  of order n. In this case ~ = 1 + x . . .  + x ~-1 is a 

free generator of M , ( F )  as a L t | U-module.  Thus (~, ~op) is a free generator of 

B as L | L-module. The last claim follows by a direct verification. | 

3. A cons truct ion  of Springer 

In this section, we restrict attention to central simple algebras of degree 3 over 

a field of characteristic different from 2, 3. We use the same notation as in the 

preceding section; in particular, we denote by B a central simple K-algebra with 

involution a of the second kind. Consider a cubic ~tale F-subalgebra L C (B, a )+  

and denote by tL/F: L . F and nL/F: L , F the trace, resp. the norm of L. 

The restriction of the trace form to L is nonsingular, hence we have an orthogonal 

decomposition: 

(B, a )+  = L _L V. 

For v E V let 

N ( v )  -- �89 TrdB(v 2) - p L ( v  2) E L, 

where PL: ( B , a ) +  * L denotes the orthogonal projection. We define an L- 

action on V such that  (V, N) is a nonsingular quadratic space of rank 2 over 

L. We give two descriptions of the action of L on V. The first was introduced 

by T. Springer [19] in connection with exceptional Jordan algebras and general- 

ized by Petersson-Racine [11] to Jordan algebras of degree 3. The second uses 

Lemma 5 and is specific to central simple algebras of degree 3. 

LEMMA 6 (Springer's Construction): The space V is a free L-modu le  o f  rank  2 

through the operation 

(~, V) ~-* ~ o V :  tL/F(~)V -- ~V -- V~ E V 
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and N: V 

for all v E V, 

, L is a nonsingular quadratic form for this structure. Moreover, 

Qo(v) = 2 tL/F(N(v)) .  

I f  v E V is invertible in B,  then 

T r d B ( v - l f )  = - N r d B ( v ) - l t L / F ( N ( v ) t )  

for all ~ E L. 

Proos Extending scalars from F to an algebraic closure, we may assume 

tha t  B is of the form M3(F)  • M3(F)  ~ a is the switch involution, and L = 

{ (d, d~ d is diagonal}. In this case the lemma follows by explicit computat ion.  

| 

We now describe the second construction: Let D = F(V~)  be the discriminant 

algebra of L, i.e. 6 is the determinant  of the trace form tL /F(x  2) = QalL(X). 

There exists a decomposi t ion 

(3) L | 1 7 4  

such tha t  the twist a of L |  L restricts on D to a ~-~ 0.. Note tha t  there are 

three natura l  imbeddings L * L |  Two of them are given by A ~-* p r (A |  

and A ~-~ pr(1 | A), respectively (pr is the projection L |  L * L |  D) and 

L , L |  D, A H A | 1, is the third one, which is a-invariant.  We have an 

induced decomposi t ion 

(4) R = L |  L |  K = L |  K x L |  D Q F  K. 

The a-ac t ion  on R (see Lemma 5) restricts on L |  to A| H A|174 

so the fixed subalgebra is 

R ~ = L x L | H, 

where H -- F ( v / - ~ ) .  

LEMMA 7: The decomposition of the R-module B induced by the decomposition 

(4) reduces to the decomposition 

B =  L@F K J_ V @F K 

over K.  In particular R ~ = L x L |  H acts on (B, or)+ = L A_ V componentwise 

and V is a free L | H-module of rank one. Moreover, the action given by the 
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restriction L C L | H coincides with the Springer action, hence N: V , L 

is a nonsingular quadratic form on the free L-module V of  rank 2. We have 

N(hv)  = nH/F(h)N(v )  for h C H, so that N extends to a hermitian form on the 

L | H-space V of  rank one. 

Proo~ As for Lemma 6 it suffices to check the split case, where the claims follow 

by explicit computations. | 

Let, as above, ~ denote the discriminant of L. We recall that  6 C F x2 if and 

only if L is cyclic and that  

QolL = (1,2,25); 

this is easy to check if L is not a field, since then L = F x F (v~ ) .  The general 

case follows by extending scalars from F to L and applying Springer's theorem. 

Combining this result with Lemma 6, we get 

(5) Qo = (1, 2,25) i (2)- tL /F(N) ,  

where tL /F(N)  denotes the Scharlau transfer of N. 

PROPOSITION 8: Let K = F(v /~  ). The following conditions are equivalent: 

(a) N is hyperbolic. 

(b) 5 = a in F X / F  x2 

(c) L K  is a cyclic extension of  K and is Galois with Galois group $3 over F. 

Moreover, i f  these conditions hold, then B is a crossed product: 

B = L K  ~ L K x  @ L K x  2 

for some x such that X 3 E F and a(x) = x. 

Proo~ (a)4=~(b): follows immediately from Lemma 7. Alternatively, if we only 

want to use Springer's Construction (Lemma 6), we get (a)=~(b) as follows: If N 

is hyperbolic, equation (5) yields: 

det Qo = -5 .  

On the other hand, Proposition 4 shows that  de tQo = - a .  Therefore, (b) 

follows. 

(b )~(c ) :  If  6 = a,  then the discriminant of L becomes a square in K,  hence 

L K / K  is cyclic. Let p denote a generator of the Galois group G a l ( L K / K ) .  The 

restriction of a to L K  is an automorphism of order 2 of L K  over F, hence alL K 
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and p generate a group of automorphisms of order at least 6 of L K / K  which 

shows tha t  L K / F  is Galois. 

If  a r 1, then L / F  is not  cyclic, hence the group generated by p and aILK is 

not  cyclic. It  is therefore isomorphic to S3. 

If  a -- 5 = 1, then B ~- A • A ~ and a is isomorphic to the switch involution. 

Moreover, LK ~- Lo • L ~ for some cyclic extension Lo/F. If  7 is a generator  of 

the Galois group Gal(Lo/F), then we choose for p the au tomorphism of L given 

by: 

p(el, e ~ = (~(tl), ~ ( 6 ) ~  

Thus, a and p do not commute;  they generate a group isomorphic to Sa- 

Our  next goal is to show tha t  B contains an invertible element x such tha t  

a (x)  = x and x f  = p(f)x for all f E L K .  These relations imply tha t  x a centralizes 

LK, is a - symmet r i c  and commutes  with x, hence x a C F.  Let 

s = {x e (B, a)+: xe = p(e)x for all e E LK}; 

this is a vector space over F in which the invertible elements form a Zariski open 

set. In  order to prove tha t  this set is non-empty, we may extend scalars from F 

to an algebraic closure, and assume 

B = Ma(F)  x Ma(F)  ~ 

a is the switch involution, and 

L = {(d, d~ d is diagonal}. 

We may  further assume tha t  p maps 

to (( /( /~ / dl , d~ ; 
d2 d~ 

we may  then choose 001) (001)op) 
1 0 0 , 1 0 0 E SMB • 
0 1 0 0 1 0 
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proving the claim. It follows that B is a crossed product, as required. 

(c)~(a):  For every element x as above, we have x , x  ~ E V (as is easily seen by 

scalar extension to an algebraic closure of F), hence N(x)  = 0, proving that  N 

is isotropic, hence hyperbolic since its dimension over L is 2. I 

Remark: Proposition 8 can also be deduced from the Corollary of [12, 

Theorem 1] in relation with [11, Proposition 2.2]. 

In order to give an explicit description of the form N for general L, we need 

the following lemmas: 

LEMMA 9: Let Pv: (B, ~r)+ , V denote the orthogonal projection. For all 

v E V ,  

nL/F(N(pv(V2)  ) ) = nL/F( N(v)  ) 2. 

Proo~ The lemma follows by explicit computation after extending scalars from 

F to an algebraic closure. | 

LEMMA 10: For any A E L x such that nL/F(A) E F x2, the quadratic form 

((~>>" [tL/F((A)) • (--1>] 

is hyperbolic. 

Proof." By Springer's theorem, it suffices to prove that  the quadratic form above 

is hyperbolic after extending scalars from F to L. We may thus assume L = F x F I 

where F '  = F(v/5). Let A = (A0, A1) with Ao E F and A1 E Ft; then 

(6 )  = • 

By [16, p. 50], the image of the transfer map from the Witt  ring W F  ~ to W F  is 

killed by ((~}), hence 

(7) 

On the other hand, 

((r tF,/F((A1)) = 0 in WF.  

nL/F(/~) -: AOnF,/F(.~I) E F x2, 

hence A0 is a norm from F I to F,  and therefore 

(8) ((~))" (Ao , -1 )  = 0 in WF.  

The lemma follows from (7) and (8), in view of the decomposition (6). 
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PROPOSITION 11: The quadratic form N has a diagonalization 

((~5)). <~> 

for some A E L • such that nL/F(A) E F • Consequently, 

Q~ = O, 2, 25> • <2>. ((~5)>. tL/v(<~>) 

-- <1,1,1> • <25>. ((~>>. tL/F(<~>) 

for some A E L • such that  nL/F(A) E F • 

Proof: Let v C V be such tha t  N(v) is invertible in L. Lemma 9 shows tha t  

N(pv(v2)) also is invertible. The  element pv(v  2) is a basis of V as a L | H-  

module,  so tha t  by Lemma 7, lett ing A = N(pv(v2)), we get 

N = ((~5)). <~> 

as wanted. Alternatively, without  using Lemma 7, and lett ing A -- N(pv(v2)) as 

above, we have 

N = <~, ; >  

for some A' E L • and nL/F(A) = nn/F(N(v))  2 E F • by L e m m a 9 .  On the 

other  hand, Proposi t ion 8 shows tha t  N becomes hyperbolic over L ( v f ~ ) ,  so 

det N = - a S ,  and therefore 

N = <<~5>>. <~>. 

The  first formula for Qo then follows from (5) by Frobenius reciprocity. Since 

((aS)} = ((a)). (5> + ((5)) in WF, 

the following relation in W F  follows: 

Q~ = (1, 2, 25) + (25).  ((a)). tL/F((A)) + (2). ((5))" ti/F((A>). 

Lemma 10 shows tha t  the last t e rm on the r ight-hand side is equal to (2) �9 ((5)). 

Since 

(25) + (2>. ((5)) = (2> and (1, 2, 2> = (1, 1, 1>, 

we get 

Since bo th  sides have the same dimension, 

isometric, proving the second formula for Qo. 

Qa -- (1,1,1> § <25). (<a>>. tL/F((A>) in WF. 

these two quadratic forms are 
| 
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COROLLARY 12: The form qo defined in Proposition 4 may be chosen as 

qo = (5).  t i / g ( ( A ) )  

for some A E L • such that  nL/F()~ ) E F x2. 

Proof" According to [16, p. 51], we have 

det ( tL /g( (A)) )  = 5nL/F(A) .  I 

So far, the involution a has been fixed, as well as the ~tale subalgebra L C 

(B, a)+. In the last proposition, we compare the quadratic forms Qo and Qo, 

associated to two involutions of the second kind which leave L elementwise 

invariant. We denote by 

q : L  , L  

the quadratic map such that gq(g) = nL/g(g)  for all ~ E L. 

PROPOSITION 13: Let  ~, ~ be two involutions on B such that  alL = o " I L  = IL: 

~' = Int(z) o 

for some z E L • . I rA  E L x is such that 

then 

Qo = (1, 2, 26) • (2). ((a6)). tL/F((A)) ,  

Qo, = (1, 2, 25) 2 (2). ((aS)). tL/F((q(z)A)) .  

Proof'. The map b H zb is an isomorphism (B, a)+ - - ~  (B, a~)+ which maps L 

to L; therefore, it also maps the orthogonal V of L in (B, a)+ to the orthogonal 

V p of L in (B, a~)+. Let N~: V p , L denote the quadratic form 

N ' ( v ' )  = �89 T r d ( v  '2) - ' ,2 v' PL(V ) for E V', 

where PL't. (B,  a~)+ , L denotes the orthogonal projection. An explicit compu- 

ration, after extending scalars to an algebraic closure of F, shows that 

N' ( zv )  = q ( z )N(v )  for all v E V. 

Therefore, multiplication by z defines a similarity N -% N ~ with similarity factor 

q(z). | 

Proposition 13 leads to the following converse of Proposition 11: 
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COROLLARY 14: Let L be an arbitrary cnbic dtale F-subalgebra in B. For 

every A E L • such that nL/F(A ) E F x2, there is an involution a on B leaving L 

elementwise invariant such that 

Qo = (1, 2, 2~} A_ (2). ((aC)). tL/F((A)) 

= (1, 1, 1> A~ (25>. <<a)>. tL/F((A>). 

Proof." By a theorem of Albert  [1, p. 157], there is an involution T leaving L 

elementwise invariant. Let 

Q~ = <1,2,25> • <2>. <<aC>>.tL/r(<~>) 

for some p E L • such tha t  nL/g(#)  E F x2. If A E L • is such tha t  nc / t (A )  E 

F x2, let ~ E F • be such tha t  

n c / v ( A # - l )  = ~2. 

Since nL/F () t#-  1) _ A~- lq (A#- 1 ), the preceding equality yields: 

A#-I  = ~2q(A#- l ) - I  = q(~A-lp).  

Therefore,  the preceding proposit ion shows that  a = In t (~A- l#)  o r satisfies the 

required properties.  | 

4. A classification of involut ions in degree 3 

In this section we continue to assume tha t  B has degree 3 and tha t  F has 

characterist ic  different from 2, 3. By Proposi t ion 4, the trace form of any 

involution a of the second kind has the form 

QG = (1, 1, 1) _1_ (2).  ((a)) �9 ( -b ,  - c ,  bc) 

where K = F ( v ~ )  and b, c E F.  Our goal is to show tha t  the 3-fold Pfister form 

((a, b, c)) determines the involution a up to isomorphism and to characterize the 

involutions for which this 3-fold Pfister form is hyperbolic.  

For any Pfister form I/a1 . . . .  , an/l, we let /(al . . . .  , an/l ~ = (1) • SO tha t  

((b, cll ~ = (-b,  -c ,  bc). 
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THEOREM 15: Let a, a' be involutions of the second kind on a central simple 

K-algebra B of degree 3. Let  

Qa = <1,1,1> • <2). ((5)). ((b,c)) ~ 

and 

Qo, = <1,1,1> • <2>. <(5)> �9 <<b', c'>> ~. 

The following conditions are equivalent: 

(a) The involutions a and a' are isomorphic. 

(b) The quadratic forms Qo and Qo, are isometric. 

(c) The quadratic forms ((a>> �9 ((b, c>> ~ and (<a>) �9 ((b', c')> ~ are isometric. 

(d) Either K = F • F or the K-hermitian forms ( - b , - c ,  bc>K and 

( - b ' ,  - d ,  b'd>K are isometric. 

(e) The quadratic forms (<5, b, c>> and <(5, b', c')> are isometric. 

Proof ( a ) ~ ( b )  is already in Lemma 1, and (b) ~=* (c) r (e) follows by Wi t t  

cancellation. Moreover, ( c ) ~ ( d )  is a theorem of Jacobson [7] if K is a field, and is 

clear if K = F • F.  We finally check tha t  ( d ) ~ ( a ) .  If K = F x F ,  all involutions 

on B - A x A~ are isomorphic to the switch involution, so (a) holds trivially. 

Thus we are reduced to the case K a field. Assume next  tha t  B = M3(K)  is 

split. Up to automorphisms of (B, a) ,  resp. (B, a ' ) ,  we have a = Int(a)  o T, resp. 

a '  = In t (a ' )  o T with a = diag(51, 52, 53) and a' = d iag(a~ ,5 '  5 '  ~ We may 2, 3)" 

assume tha t  515253 = 1 = 0q01253.' ' ' By Proposi t ion 2, we have 

Q~ _~ <1,1,1> • <2>. <<5>> �9 <5~5~ 1, 5~51 ', 515;1> 

and 

Thus  

Since 

/ 5 1 5  I--1 I i - -1  I i - -1~ Qo, -~ (1, 1, i)  • (2) .  ((5)). \ 2 3 , 5 3 5 1  , 5 1 0 l  2 ). 

~3/1525-1'5351-1,510~2-1~K ~-- I , , - 1  I , - I  , , -1~ ~5253 ,5351 ,5152 )K. 

<~1~253> �9 <525~ 1, 535~ I, 51~;i>~ -~ <51, 52, 53>~, 

we get isometries ha ~- ha, or (a)M3(K) ----- (a')M3(K) and (M3(K), a) is isomorphic 

to (M3 (K) ,  v~') by Lemma 1. 

If B is not  split and if a '  = Int(u)  o a,  we have to check by Lemma 1 tha t  the 

hermit ian  spaces (u)s and (l>B are similar. Replacing u by u .  Nrd(u) ,  we may  
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assume tha t  Nrd(u)  C F x2. Let. L = F(x) with x C (B,o)+,x r F, so tha t  L 

is a field extension of F of degree 3. The  algebra B |  L is split over K |  L x 

and there  is v' E GL3(K  |  L) such tha t  

u| 1 = Av'(a| 1)(v'). 

Thus, denot ing by - :  K * K the non-trivial automorphism of K/F,  

Nrd(u  | 1) = A 3 Nrd(v ' )Nrd(v ' )  = #2 

with # E F ,  since Nrd(u)  E F x2, and we can write 

A = (#A - i  Nrd (v ' ) - l ) (#A  -1 Nrd(v ')  - i )  = uP. 

It follows tha t  u | 1 = v(a @ 1)(v) with v = vv', s o  (tt)B| "~ (1)B| By the 

Bayer -Lens t ra  [4] generalization of Springer's theorem to hermit ian spaces, we 

have (u)s ~ (1)B and, by Lemma 1, (B, a)  m (B, a ') .  | 

In view of the equivalence (a) .-e---->. (e) in Theorem 15, the Pfister form ((a, b, c)} 

classifies involutions a on B. We denote it by rr(B, a).  Note tha t  re(B, a)  is 

isometric to the norm of the octonion algebra OctA associated in [14] to any 

simple Jordan  algebra A of degree 3 and dimension 9, if A = (B, a)+.  Let  

(B, a )~  = {x G (B, a)+:  Trd(x)  = 0} = 1 -L C (B, a)+.  

Since Qa(1) = 3, the restrict ion Q$ of Qo to (B,o)~_ is given by 

QO __ (2, 6) A_ (2).  ((a)). ((b, c)) ~ -- (2).  ((1, 3) A_ ((a)). ((b, c))~). 

In the Wi t t  ring WF, we have 

((a)). ((b,c)) ~ = ((a,b,c)) - ((a)); 

therefore, 

in WF. 

Compar ing  dimensions on bo th  sides, we see tha t  the Wi t t  indices of bo th  sides 

are related by: 

(9) w(Q ~ = w((3, a)  _1_ ((a, b, c})) - 1. 

Isotropic elements of Q~, are elements u E (B, a )+  such tha t  Trd(u)  = Wrd(u 2) = 

0. Since the reduced characteristic polynomial  of any a E B has the form 

1 [Trd(a)2 _ Trd(a2)] X - Nrd(a)  �9 1, X 3 - Wrd(a)X 2 + 

it follows tha t  u is isotropic if and only if u 3 = Nrd(u)  E F.  
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THEOREM 16: The following conditions are equivalent: 

(a) ~r(B, er) is hyperbolic; 

(b) Either K = F • F ( - b , - c ,  bc) : (1, -1 ,  

(c) w(Q ~ > 2; 

(c ~) (B, or)+ contains a subspace U of dimension 2 whose elements saris[y: u 3 = 

Nrd(u); 

(d) w(Q ~ 

(d') (B, a)+ contains a subspace U of dimension 3 whose elements satisfy: u 3 = 

Nrd(u); 

(e) (B, a)+ contains an dtale cubic F-algebra L of discriminant a. 

(f) B is a crossed product: 

B = M @ M x •  M x  2, 

where M (D K)  is a GMois extension of F with Galois group 83, the 

involution a preserves M and leaves x invariant. 

Proo~ (a)=~(b) is a straightforward consequence of Theorem 15, and (c) 

(c'), (d) r (d ~) follow from the preceding observations on isotropic elements 

in QO. Moreover, (a )~(d)  follows from (9), (e) ~ (f) from Proposition 8, and 

(d)=~(c) is clear. We now show (c):r if the Witt  index of QO is at least 2, 

then (9) shows that (3, a) _1_ ((a, b, c)) contains isotropic subspaces of dimension 3. 

Therefore, ((a, b, c)) is isotropic, hence hyperbolic, proving (a). Assuming (e), 

the formula for Qa in Proposition 11 shows that w(Q ~ ~ 3, hence (e)=~(d). To 

complete the proof, we show (c')=~(e), using results from [6]. We first consider 

the easy special case where B is not a division algebra. If a = 1 in F •  • 

then we may assume 

B = A • A ~ 

for some central simple F-algebra A of degree 3, and a is the switch involution. 

A theorem of Wedderburn [1] shows that A contains a cyclic extension L of F.  

We may then choose 

M = {(g, gop): g e L}. 

If B is split, then since (c') ~ (b), it follows that a is the adjoint involution with 

respect to an isotropic hermitian form. We may thus assume B = M3(K) and 
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a = Int(u) o T, where u = 
1 0 O )  
0 0 1 . 
0 1 0 

We may then choose 

0 0) } 
M-= 0 k 0 : f E F ,  k E K  . 

0 0 k 

For the rest of the proof of (c') =~ (e), we now assume that  B is a division 

algebra. Let U C (B, a )+  be a subspace of dimension 2 such that  u 3 = Nrd(u) 

for all u E U. According to Lemma 2 of [6], one can find a basis (Wl, w2) of U 

such that  

Following [6], we let 

01 ~ wllW2~ 

Trd(w~-lw2) = 0. 

02 ~ w1101wl, 03 = w1102w1 �9 

Note 02 -- w~3(wlw2wl) ,  so cr(02) -- 02. We let also E -- K(02103) if 02103 ~ K 

and E = K(02) if 02103 C K. Theorem 3 of [6] shows that  E / K  is cyclic and 

E / F  is Galois with Galois group $3. Moreover, one of the order 2 automorphisms 

of E / F  is the restriction of the involution 

a '  = Int(0~ -1) o a. 

Let L'  C E denote the subfield of a '- invariant elements. Since L~K -- E is 

cyclic over K and Galois over F with group 83, Proposition 8 shows that  the 

discriminant of L ' / F  is a.  

Observe now that  

02 = w13w;3(wlw )(w w1), 

hence 021 = Ava(v) for A = WlW23 3 and v = w11w~ 2, so that  

Int(v): (B, 

is an isomorphism of algebras with involution. Pulling L ~ C (B, (r~)+ back gives 

the wanted extension L c (B, a)+.  | 

Remark: Theorem 16 gives a positive answer to a question about  Tits construc- 

tions asked in [14, (2.12)]. 
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An involution a satisfying the equivalent conditions of Theorem 16 is called 

d i s t i n g u i s h e d .  By Theorem 15, two distinguished involutions on B are isomor- 

phic. The existence of distinguished involutions is clear if B _~ M3(K) is split: 

the adjoint involution with respect to any isotropic hermitian form on K 3 is dis- 

tinguished. If  K = F x F,  the switch involution on B -~ A x A ~ is distinguished: 

in fact we have a = 1, so that  ((a)) = ( 1 , - 1 )  and QO has Wit t  index at least 3. 

The existence in general of distinguished involutions for algebras of degree 3 is 

shown next. 

PROPOSITION 17: For every cubic dtale F-algebra L C B, there is a distin- 

guished involution a such that L C (B, a)+. 

Proo~ Let A0 E L x be such that tL/F(AO) -~ 0, and let 

A = AO/nL/F(AO); 

then nL/F(A ) : nL/F(AO) -2 E F x2 and tL/F(A ) = O. Corollary 14 shows that  

there is an involution a on B such that  L C (B, ~)+ and 

Qo = (1,1,1> _1_ <25>. ((a>>. tL/F(<A>), 

hence 

Qo = (2). ((1, 3) • (5). 

Since tL/F(A ) = O, the form tL/F((A)) is isotropic, hence the Wit t  index of 

((Ol)) "tL/F((~)) is at least 2. Therefore, condition (c) of Theorem 16 holds. I 

Alternativeproo~ Pick an involution a0 such that  L C (B, a0)+ and denote by V 

the orthogonal of L with respect to Qoo, as in the preceding section. By Zariski 

density, we may find an invertible element v E V such that  nL/F(N(v))  ~ 0, 

where N: V , L is the quadratic form defined in section 3. Lemma 6 shows: 

T r d ( v - l t )  _-_ _ Nrd(v)- l tL/F(N(v)e)  

for all e C L. Since N(v) is invertible in L, we may, again by Zariski density, find 

g E L • such that  

Wrd(v-le) = 0. 

Following [6, Proposition 1], the vector space 

U = v - l L  M ker Trd 



320 D.E. HAILE, M-A. KNUS, M. ROST AND J-P. TIGNOL Isr. J. Math. 

is at least 2-dimensional over F and satisfies: u 3 = Nrd(u) for all u E U. We 

then have v - l ~  E U for ~ E L as above. Let 

a = Int(e -1) o a0. 

Since L C (B, a0)+ and t~ E L x , it follows that  L C (B, or)+. We claim that  a is 

distinguished. Let y = g - i v  E B x , then 

yU = ~- l (vV)  C L C (B,a)+ 

and 

a(y) = g- lao(y)g  = g - l v g - l e  = y, 

hence (B, a )+  contains y2Uy = y(yU)y. Since v - l / E  U, we have y-1 E U, hence 

y3 = Nrd(y) E F • . For u E U, we have u 3 = Nrd(u) E F,  hence 

(y2uy)3 = y2uy . y2uy . y2uy = y2u3y Nrd(y) 2 

= Nrd(u) Nrd(y) 3 = Nrd(y2uy). 

Therefore, y2Uy C (B, a )+  is a subspace of dimension _> 2 whose elements satisfy 

X 3 : Nrd(x),  hence a is distinguished. I 

A third proof of the existence of distinguished involutions is given in 

Proposition 31. 

COROLLARY 18: The space (B, a)+ contains an isomorphic copy of every cubic 

dtale F-subalgebra L of B i f  and only i f  a is distinguished. 

Proo~ Since all the distinguished involutions on a central simple algebra B are 

isomorphic, the if direction follows from Proposition 17. Conversely, by Theo- 

rem 16, (e), the only involutions which leave elementwise invariant 6tale cubic 

F-subalgebras of discriminant a are the distinguished involutions. I 

The fact that  the only involutions which leave elementwise invariant 6tale cubic 

F-subalgebras of discriminant a are the distinguished involutions also follows 

from the following general result: 

PROPOSITION 19: Let a be an involution on B and let L be a cubic dtale F-  

algebra such that L C (B ,a )+ .  Let ~ E F x represent the discriminant of L / F .  

The Pfister form 7r(B, cr) has a factorization: 
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where ~ is a 2-fold Piaster form whose pure subform satisfies: 

for some ~ �9 L x such that 

In particular, 

Proo f  

nL/F(e) e 6.  F x2 

<<5>> = o. 

Proposition 11 shows that 

Qo = <1,1,1> _L <2). <<c~>>. tL/F(<6A)) 

where A e L x is such that  nL/F(• ) E F x2. Letting ~ = hA, we get nL/F(~ ) �9 

5. F x 2 and tL/f(<f})  is a 3-dimensional form of determinant 1. Comparing with 

the form of Qo in Theorem 15, we obtain: 

I t (B, cr) = <<(~))- (<I) _L tL/F(<g))). 

The relation (<1) _1_ tL/F(<6A)))" {{6}} = 0 follows from Lemma 10, using the fact 

that ( - 6 ) .  ((6}} = <<5)). | 

The condition ~ .  ((6>> = 0 in the proposition above yields some restriction 

on the discriminants of cubic F-algebras L which lie in (B, a)+. It does not 

yield any information on cyclic extensions however, since in this case ((6>> = 0. 

Nevertheless, there are examples where (B, a)+ does not contain any cyclic cubic 

extension of F.  Consider for instance the "symbol algebra" A~(s,  t) generated 

over the iterated powerseries field C((s))((t))  by two indeterminates i , j  subject 

to the relations: 

i 3 = s, j3 = t, j i  = wij,  

where w is a primitive cube root of unity. This algebra carries an involution 

extending conjugation on C such that  

a(i) = i, cr(j) = j.  

The subfield of a-invariant elements kn the center C((s))(( t))  is •((s))((t)), which 

does not have any non-trivial cyclic extension of odd degree. Therefore, the space 

of symmetric elements (A~o(s, t), a)+ does not contain any cyclic extension of F 
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of degree 3. We are indebted to H.P. Petersson (see [13]) for suggesting this 

example. 

Let L be an arbitrary cubic ~tale F-subalgebra in B. Let E(B,  L) be the 

pointed set of isomorphism classes of involutions a of B such that  alL : -  ZL, the 

point being given by the class of distinguished involutions. 

COROLLARY 20: The map # E L • ~-* a~, where a~ is the involution determined 

up to isomorphism by the trace form 

Qo, = (1,1,1} 2 (25}. ((~}}. tL/g((q(#)}L), 

induces a surjective map of pointed sets 

L• /nLK/L(LK•  �9 F • * E(B, L). 

I f  L / F is cyclic, the map is well-defined on the set of orbits of the group Gal( L / F)  

in L x / n L K / L ( L K  x) �9 F • 

Proo~ The proof of Corollary 14 shows tlmt the elements A E L such that  

nL/F(A) e F x2 are exactly the elements of the form q(#) for # E L • Thus, by 

Corollary 14, Qo, is the trace form of an involution a , .  Elements it, it' E L x such 

that  #~ = (nLK/L(I))It for 77 E L K  x and ( E F x give isomorphic involutions in 

view of Theorem 15 (d), since q(it') = ~2 q(~) q(it) q(~) implies that the hermitian 

forms (q(P))LK and (q(it')}Lg are isomorphic. I 

5. C o h o m o l o g y  a n d  symbo l s  

Let F be a field of characteristic different from 2; let Fs denote a separable closure 

of F and F = Gal(Fs/F) .  For any integer n relatively prime to the characteristic 

of F,  let 

#n = {xE  Fs:xn = 1} 

denote the F-module of n-th roots of 1. The Kummer exact sequence 

1 . # n  .Fff  ~--~F~ . 1  

and Hilbert 's Theorem 90 yield canonical isomorphisms: 

H '  (F, #,~) = F •  • and H~(r, Itn) = nBr(F) ,  
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where nBr(F)  denotes the subgroup killed by n in the Brauer group Br(F).  Since 

the action of F on #2 is trivial, we also have 

Hi (F ,  #2) = Horn(F, {4-1}). 

For any a E F • , let r F , {+1} be the (continuous) homomorphism cor- 

responding to a .  F • under the identification: F•  • = Horn(F, {4-1}); it is 

explicitly defined by: 

r = {+1_1 ifif'/leaves i n v a r i a n t ~  permutes } the square roots of a in Fs. 

We then define a F-module Z(a)  by twisting the trivial action of F on Z: for 

E F and z E Z, we let ~ �9 z = r Multiplication in Z yields a canonical 

isomorphism: 

Z(a)  | Z(Z) = Z(aZ) for a, 9 e F x, 

since r162 = r  for all "r E F. 

For any F-module M, we define a twisted module M(a) by: 

M(a) = M | Z(a) .  

The Galois cohomology groups He(F, M) are also denoted He(F, M). 

PROPOSITION 21: Let K = F ( v ~  ) be a quadratic field extension o fF .  For 

all g ~_ 1 and all F-modules M on which multiplication by 2 is invertible, the 

following sequence is split exact: 

0 , He(F,M(a)) ~e~ He(K,M) r He(F,M) , 0 

where res (resp. cor) is the restriction (resp. the corestriction) map. The restric- 

tion map identifies He(F, M ( a ) ) with the subgroup of 

He(K, M) consisting of the classes of cocycles which are cohomologous to the 

negative of their conjugate under the action of Gal( K / F): 

He(F, M(a)) = {~ E He(K, M): qo + ~ = 0}. 

Proof From the definition of M(a), it is clear that M = M(a )  as modules over 

Gal(Fs/K). Let G = Gal(K/F) = {1, t} and let IG = Z .  (1 - t) denote the 

augmentation ideal in the group ring ZG. Denote by E the augmentation map: 

E: ZG , Z 
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and define F-module homomorphisms s: Z 

s(z) = z(1 + ~), t(x) = (1 - L)x 

These maps fit into a commutative diagram: 

, Z G a n d t : Z G  , I G b y :  

f o r z C Z ,  x E Z G .  

Observe that  IG ~_ Z(a) ;  therefore, tensoring the diagram above with M, we get 

the following commutat ive diagram: 

0 �9 M ( a )  , t M |  s M 

M ( a )  i , M Q z Z G  r. , M , 0  

and since multiplication by 2 is invertible on M, it follows that  the sequence 

0 , M(a)  ~, M |  ~, M , 0  

is split exact. I t  yields a split exact sequence in cohomology: 

0 , H t ( F , M ( a ) )  i .  Ht(F,  M Q Z G )  ~ ' ,  H e ( F , M )  , O. 

By the lemma of Eckmann-Faddeev-Shapiro,  there is an isomorphism 

r He(F, M @ ZG) --% He(K,  M) 

such that  E ,  = cor o r and r o i ,  = res. This proves the first part.  

Let res ' :  H t ( F , M )  , H t ( K , M )  denote the restriction map. For ~ E 

H t ( K ,  M),  we have: 

(10) res' o cor(~) = ~ + ~, 

hence ~ + ~ = 0 if cor(~) = 0. Conversely, applying cor to both  sides of (10), we 

get: 

2 cor( ) = cor(  + 

since cot ores ~ = 2. Since multiplication by 2 is invertible on M, it follows that  

cor(~) ---- 0 if ~ + ~ ---- 0. Therefore, the image of Ht(F,  M(oO) in H t ( K ,  M)  can 

be indifferently described as the kernel of the corestriction map or as the kernel 

of the map ~ ~-* ~ + ~. | 

0 , IG o t ZG , ~ Z �9 0 

0 . IG , ZG ~ , Z , 0 
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Remark: If multiplication by 2 is not invertible on M, the restriction and 

corestriction maps fit into a long exact sequence described by Arason and El- 

man in [3, Appendix]. 

We shall apply this proposition to the special cases where M = Z/nZ  (n odd) 

with trivial action and M = #n = {x E F~: x n = 1} (assuming n odd and 

relatively prime to the characteristic of F).  We first review how, for an arbitrary 

finite group G, the first cohomology set Hi(F, G), where the Galois action on G is 

trivial, is related to Galois extensions of F with Galois group G. We recall that,  

in this case, 

Hi(F, G) = Horn(F, G)/~, 

where Horn(F, G) is the set of continuous homomorphisms F ' G and X' "~ X if 

X'(7) = gx(~/)g -1 for some g 6 G. In particular we have Hi(F, G) = Hom(r,G) 
if G is abelian. 

Let L be a finite-dimensional commutative algebra over F and let 

X(L) = AlgF(L, F~) 

denote the set of F-algebra homomorphisms L ~ F~. Let G be an arbitrary 

finite group acting on L by F-algebra automorphisms ~ ~ g �9 g. We call L a 

Galois  G-a lgebra  if L is 4tale of dimension n = IGI over F and the action of G 

on X(L) is simply transitive. 

Now, assume L is a Galois G-algebra and fix some ~ E X(L).  For every ~/E F, 

there is a unique X~ (7) 6 G such that 

7(~(g)) -- ~(X~(7) * •) for all g E L. 

The map Xf: F ' G is a continuous homomorphism: 

Xr 6 Hom(F, G). 

If L, L' are Galois G-algebras over F and ~ E X(L) ,  ~' E X(L'),  an isomorphism 

r (L, ~) ~ (L', ~') is an isomorphism of algebras over F which commutes with 

the action of G and such that  ~' o r = ~. An isomorphism of Galois G-algebras 

r L ~ L ' is an isomorphism of algebras over F which commutes with the action 

of G. 
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PROPOSITION 22: The map (L,~) ~-~ X~ defines a 1-1 correspondence be- 

tween the set of isomorphism classes of couples (L, ~), where L is a Galois G- 

algebra and ~ �9 X(L), and the set Hom(F, 6). Moreover, L H X~ induces a 1-1 

correspondence between the set of isomorphism classes of Galois G-algebras and 

the set Hi(F, 6). 

Proos This proposition is presumably well-known (see for example [17]), but 

we include a sketch of proof for the reader's convenience. For X �9 Horn(F, G), we 

define an action of F on the algebra ~(G, F~) of maps G . F~ by: 

(3"<>f)(x)=--3"(f(x(3")-lx)) for 3' e r ,  x � 9  

Let ~• denote the algebra of invariant elements under this action: 

~ •  , F ~ : 3 ' ( f ( x ) ) : f ( x ( 3 ' ) x ) f o r 3 ' � 9 1 4 9  

This algebra carries a natural ~-action defined by: 

( g , f ) ( x ) = f ( x g )  for x ,g  �9 G, f � 9  

Moreover, for g �9 G, there is an F-algebra homomorphism 

cg: ~x . F~ 

defined by: 

~g(f) = f(g) for f �9 ~x, 

and X(~x) = {ca: g �9 G}. It is then straightforward to check that  ~x is a Galois 

G-algebra, and that  X~I = X. 

For any Galois G-algebra L and any ~ �9 X(L),  there exists a unique isomor- 

phism (L,~) -% (~xr this isomorphism maps g �9 L to fe �9 ~x defined by: 

S~(~) = ~(g �9 2) for a �9 G. 

Let now ~, ~ E X(L).  By definition of Galois algebra, there is a unique element 

g E G such that  y(g) = ((g * e) for all g C L. Then, for 3' E F and g E L, 

3'(~(e))  = 3 ' ( ~ ( g ,  ~)) = ~(x~(3')g * ~) = ~(g * ( g - l x ~ ( 3 ' ) g  * ~)), 

hence 

x,(3') =g-lxr  
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This implies the last claim of Proposition 22. | 

We now consider the particular case where 6 is dihedral: let D,~ be the group 

generated by two elements r, s subject to the relations: 

r n ---~ 1,  82 = 1 and rsr = s, 

and let Zn denote the cyclic (normal) subgroup of :D~ generated by r. The group 

:Dn is the semidirect product :D~ = Z~ >4/*2 and we have a split exact sequence 

(11) 1 " Z n  * ~Dn P '  /*2 , 1. 

PROPOSITION 23: Let L be a Galois :D~-algebra over F and let 

no = { g  e L: r * g = g } ,  L1 = {g  e L: s * g = g } .  

Then L0 F(v ) rot some �9 g • For all �9 X(L), the homomorphism 
p o X~ �9 Horn(F,/*2) corresponds to a.  F • 2 under the identification Horn(F,/.2) = 

HI(F,/*2) = F X / F  • Moreover, i f  n is odd, a .  F x2 is the discriminant of 

L / F ,  so that the map H I ( F , / ) n )  , HI(F,~*2), induced in cohomology by p, 

associates to L the discriminant of L. The discriminant of L 1 / F  is 1 if  n - 1 

mod 4 and a .  F x2 i f n  - 3 mod 4. 

Proo~ The first s tatement  is clear, since Galois theory shows L0 is a quadratic 

dtale algebra over F.  Since the action of Zn on Lo is trivial, the action o f / ) n  

factors through 1'2: we may set 

p ( g ) * g = g * ~  f o r g � 9  a n d ~ � 9  

For all ~ �9 X(L) ,  we then have 

7(~(~)) = ~(P o X~(7) * ~) for 7 �9 F and ~ �9 Lo, 

proving that  po X~ �9 H 1 (F,/*2) is the homomorphism corresponding to the Galois 

#2-algebra Lo/ F. 

For the rest of the proof, assume n is odd. The discriminant of L 1 / F  is 

represented by the determinant 

det(tr L1/ F(eiej ) )l <_~,j<_n, 

where (ei)l<i<n is a basis of L1 over F.  Since, for $ �9 L1, 

n 

trL1/V(g) = E ~(r' * ~), 
i= l  
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( t r L 1 / F ( e i e j ) ) l < _ i , j < _ n  = m t . m 

m = (~(/ ' i  * e j ) ) l < _ i , j < _ n .  

if 51 = det m E ~(L), the discriminant of L1/F is represented in 

F•  x2 by 512. For 7 E F, we have 

7(51) = ~(det(x((7)r  i * ej)l<_i,j<_n) = ~(det(x~(7)ris * e j ) l < _ i , j < _ n ) .  

If X~ (7) E Zn, multiplication by X~ (7) is an even permutation of Zn, hence 

det(x((7)r i * ej)l<_i,j<_n = det(r  ~ * ej)l<i,j<n, 

and therefore 7(51) = 51. If X((7) • Zn, the map z ~-+ X~(7)zs is a permutation 

of Zn of signature ( -1 )  (n-W2, hence 

7(51)  = 

Therefore, if n -- 1 mod 4 we have 51 E F, hence the discriminant of L1/F is 

trivial. If n =- 3 mod 4, we have 

7(51) = p o x (7) 

hence the discriminant of L1/F corresponds to p o ~ E HI(F, #2), hence it is 
a "  F x2.  

The discriminant of L / F  is calculated in a similar way: multiplication by 

g E ~Dn defines on Dn a permutation of signature p(g), hence the discriminant of 

L / F  corresponds to p o X~ E HI(F,/22). m 

Suppose now K = F(Vra) is a quadratic field extension of F contained in F~. 

We denote by FK the Galois group FK = Gal(F~/K) of F~ over K.  

PROPOSITION 24: Suppose n is odd. The group HI(F, Z,(a))  classifies the 

Galois Z~-algebras L over K which can be endowed with a Galois l)n-algebra 

structure over F extending the action of Zn. 

Proof." Let a E F \ FK. Proposition 21 shows that 

HI(F, Z~(a))  = {X E HI(K, Zn): XR = 1} 

= { x  E H o m ( r K ,  Z . ) :  = 1}, 
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where ~ is defined by: 

= - 1 )  for 7 E FK. 

Let L be a Galois Zn-algebra over K which also has a Galois/)n-algebra structure 

over F extending the action of Zn. Let ~ E X(L) .  We may assume ~ is a K- 

algebra homomorphism; the restriction to FK of the associated homomorphism 

X~: F ' /)n is then the element X~ ]rn E Hi(K ,  Zn) associated to L, viewed as 

a Galois Zn-algebra over K. 

If X~(a) E Zn, then p maps the image of X~ to 1 E #2, hence Proposition 23 

shows that  the subalgebra L0 of invariant elements under r splits as F x F.  This 

is a contradiction since L0 = K. Therefore, X~(~r) r Zn, hence, for ~/E FK, 

X~ IFK (0"~ O'-1) : X~ (0")~ (" / )~  (O')--1 -~- X~ [FK (~)--1. 

This shows that  X~[r~X~ir1~- = 1, hence Xr E Hi(F,  Zn(a)). 

Conversely, to every X E H I (F, Zn (a)) we associate the Galois Z~-algebra over 

K: 

~x = {f  E ~(Zn, Fs): ~/(f(x)) = f(x(~/)x) for all x E Z~}. 

Since X~ = 1, we may extend the Zn-action on ~x to an action of 7)n by letting: 

(s * f ) (x)  = o( f (x -1) )  for f E ~x, x E Z~. I 

Remark: Another proof of the proposition above can be obtained by defining a 

twisted action of F on 7)n extending the action on Zn. There is an exact sequence 

corresponding to (11): 

1 , Zn(a) ' ~n(a)  " P2 , 1, 

and the associated cohomology sequence: 

1 * HI(F,  Zn(a)) * H l ( F , ' ~ ) n ( o ! ) )  , Hi(F ,#2 )  

yields an alternative (equivalent) description of Hi(F,  Zn(a)). 

As observed in the proof, all Galois Zn-algebras L over K which can be en- 

dowed with a Galois/)n-algebra structure over F extending the Zn-action have 

discriminant a .  F • 2. It is also clear from the proof that the 7)n-algebra structure 

on L is not uniquely determined, since it depends on the choice of a. However, 
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the subalgebra L1 of invariant elements under the element s of I)~ does not de- 

pend on the choice of the I)~-algebra structure up to F-isomorphism. Therefore, 

for X �9 H i (  F, Z~(a)) ,  we may denote by F x an F-algebra which is isomorphic 

to the subalgebra of s-invariant elements in the algebra L corresponding to X 

under the correspondence of Proposition 24. According to Proposition 23, the 

discriminant of F x is 1 if n = 1 mod 4 and a �9 F • if n -= 3 mod 4. 

Any X �9 H i (  F, Zn) defines a Galois Z~-algebra over F which we will also 

denote by F x. The discriminant of this extension is 1. 

We now turn to the Galois module #n of n-th roots of unity, assuming that  n 

is relatively prime to the characteristic of F. As above, we denote 

~tn(OL) : ~n  e Z  ~(OL). 

PROPOSITION 25: Let K = F ( v ~  ) be a quadratic field extension o fF .  For any 

odd integer n relatively prime to the characteristic of F, 

H I ( F ,  pn((~)) -- { x .  K xn �9 K • 2 1 5  x h =  1} 

and H2(F, ~tn((l) ) classifies up to Brauer-equivalence central simple K-algebras 

of exponent n which admit involutions of the second kind leaving F elementwise 

inyariant. 

Proo~ Applying Proposition 21 with M = #,~ and e = 1 yields: 

H l ( F , # n ( O l ) )  -~ { x .  K xn �9 K•  / K •  x ~ � 9  F X " } .  

If x E K • is such that  x~ = A" with A E F • then 

X ! : X(,~(n--1)/2X--1) n 

represents the same element of K x / K  x'~ and satisfies: x ~  = 1. This proves the 

first claim. 

For ~ = 2, Proposition 21 yields a split exact sequence: 

1 , H 2 ( F , p , ( a ) )  , . B r ( K )  ~o~ , B r ( F )  , 1. 

The proposition follows, since by the theorem of Alber t -Riehm-Scharlau [16] 

a central simple K-algebra  admits an involution of the second kind leaving F 

elementwise invariant if and only if its corestriction is trivial. I 
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For a C K • wi th  a~ = 1, we denote the class of a in HI(F, pn((~)) by [a] 

and we define a commuta t i ve  ~tale F -a lgebra  Fa of dimension n as follows: on 

the K - a l g e b r a  K(y) where y is an inde termina te  subject  to yn _- a, define an 

F - a u t o m o r p h i s m  t~ extending - on K by let t ing ~(y) = y -1 .  Then  Fa is the F -  

suba lgebra  K(y) e of invariant  elements  under 8. I t  is easily seen t ha t  F~ _ F~, 

if [a] = [a'] e Hl(F, pn(a)). For [a] �9 H I ( F , # n )  = F X / F  x", a �9 F x, we also 

denote  by  Fa the F -a lgeb ra  F(y) where y"  = a. 

We now relate by cup-produc t  the special cases Z ,  and #,~ considered above. 

There  is a canonical  isomorphism: Z ,  |  # ,  = # ,  defined by: r i | { H {i. 

Therefore,  for 61,62 �9 F x , 

Zn(61) | #n(62) : Zn | ~tn | Z(61) | Z(62) = #n(6162). 

Thus  the  cup-produc t  defines a map:  

Hl(F, Zn(61)) • Hl(F, tt~(62)) , H2(F, pn(6162)). 

PROPOSITION 26: Let K = F(x/~ ) be a quadratic t~eld extension o f F  and let 

61,62 �9 F • be such t ha t  6162 = a m o d F  x2. Let  X �9 H1(F, Zn(61)) a n d a  �9 

F ( v ~ 2 )  • such that nF(v~)/F(a) = 1, with cohomologyclass [a] �9 H i ( F ,  #n(62)). 

There  exists a central simple K-algebra B(X, a) o /deg ree  n such that 

(1) [B(x  , a)] = X U [a] e H2(F, #n(a)); 

(2) B(X, a) admits an involution a of the second kind such that (B(x ,  a),  a ) +  

contains subalgebras isomorphic to F x and to F~. 

Proof." We first consider the special cases where 61 c F x2 or 62 �9 F x2. I f  

61 �9 F x2, we have X �9 HI(F, Zn) and [a] �9 Hl(F, pn(a)) with a �9 K x such 

t ha t  ag  = 1. The  algebra F x is a Galois Zn-a lgebra  over F .  The  central  s imple 

a lgebra  B(X, a) is the crossed product :  

n--1 
B(x, a) = | K)z', 

i=0 

where the inde te rmina te  z is subject  to the re la t ions :  

z(g|  = [(r*g)|  f o r g e F x ,  k e K ,  and z ~ = a .  

An involution of the second kind a on B(X , a) is defined by: 

a(g|  = ~ |  f o r ~ � 9  k � 9  and a ( z ) = z  -~. 



332 D.E. HAILE, M-A. KNUS, M. ROST AND J-P. TIGNOL Isr. J. Math. 

Clearly, (B, a )+  contains F x and the subalgebra Fa C K(z). 
If52 �9 F • then X �9 HI(F,Z~(a)) and a �9 F x, [a] �9 Hl(F, pn). Let L be a 

Galois Z , -a lgebra  over K corresponding to X. According to Proposition 24, we 

may also choose a Galois I)n-algebra structure on L, viewed as an algebra over 

F. The algebra B(X, a) is the crossed product: 

n - - 1  

B(X, a) = ~]~ L z ~ 
i = 0  

where the indeterminate z is subject to the relations: 

ze = ( r*  t )z  for ~ �9 L, and z n = a. 

An involution of the second kind a on B(X, a) is defined by: 

a(t) = s . g  f o r g � 9  and a ( z ) = z .  

By definition, it is clear that  Fa = F(z) c (B, a)+ and that  the subalgebra 

L1 C L of invariant elements under s, which is isomorphic to F• lies in (B, a)+.  

Suppose now 51,52 ~ F x2. Let F '  = F(x/~x) and K '  = K ( v ~ l ) .  Let L be 

a Galois Zn-algebra over F '  which corresponds to X �9 Hi( F, Zn(51)); according 

to Proposition 24, we may endow it with a Galois ~P,-algebra structure over F. 

Since 5152 --- a mod F x 2, we may identify F(v~2)  with a subfield of K r. Consider 

the following crossed product algebra over K~: 

n - - 1  

B' = O(L| K)z' 
i----0 

where z is subject to: 

z ( t |  = [ ( r * ~ ) Q k ] z  f o r t � 9  k � 9  and z n = a .  

This algebra represents the restriction res(x U [a]) �9 HI(F ', #n(a)). We define 

an involution a ~ on B t by: 

a ' ( t |  = ( s * t )  Q k  f o r t � 9  k � 9  and a'(z)=z.  

On the other hand, we define a K-algebra automorphism t? on B r by: 

0 (~ |  = ( s * g ) |  f o r g C L ,  k E K ,  and ~ ( z ) = z  -1. 
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The restriction of 0 to the center K ~ is the non-trivial automorphism over K,  

and 0~ = I ;  therefore, the subalgebra B = B ~e of invariant elements under 0 is a 

central simple K-algebra  such that  

B I = B |  K ~. 

Since the restriction map res: H2(F, #~(~)) , H2(F ', p~(a))  is injective (since 

n is odd), it follows that  B represents the cup product X U [a] �9 H2(F, #n(a))  

and we define B(X, a) = B. Moreover, 0 and ar commute, hence the restriction 

of a r to B(X, a) defines an involution a of the second kind. The subalgebra L1 

of L elementwise invariant under s and the subalgebra K~(z) ~ invariant under 0 

both lie in (B(x ,  a), 0)+; the involution a thus satisfies the required properties, 

since L1 "~ F x and K'(z )  ~ ~ Fa. | 

PROPOSITION 27: Let B be a central simple K-algebra of degree n (odd) which 

admits involutions of the second kind leaving F elementwise invariant, and let 

5 C F • . I f B  contains a subfield isomorphic to F• for some X E HI(F,  Zn(5)), 

then B ~_ B ( x , a )  for some a E F (s / r~ )  x such that n F ( v ~ ) / f ( a  ) = 1. 

Proof  Suppose first 5 E F • Then F x | K is a maximal subfield of B which 

is cyclic over K,  hence B is a cyclic algebra: 

(12) [B] = resg/g(X) U [b] �9 H2(K,  #n) 

for some b �9 K • (so that  [b] �9 H i ( K ,  #n)), where [B] denotes the image of B 

in H2(K,  #,~). Since B admits involutions of the second kind over F, we have 

COrK/F(B ) = 0; therefore, 

(13) X U COrg/F([b]) = 0 in H2(F, #~). 

Since n is odd, we may find m �9 Z such that  2m -- 1 mod n. Then 

b -  b 2m = (bb-1)mnK/F(b) m mod g •  

therefore, letting a = (bb-1) m, we have [el �9 Hi(F,  #n(c0) and 

[b] = [a] + m reSg/ f  o COrg/F([b]) in H i ( K ,  #n). 

Substituting in equation (12), we get: 

[B] = resK/g(X) U [a] + m reSK/F(X U COrK/F([b])), 



334 D.E. HAILE, M-A. KNUS, M. ROST AND J-P. TIGNOL Isr. J. Math. 

hence B "~ B(X, a),  in view of (13). Suppose  next  6 r F x2 and let  F '  = F(x /~) .  

Since 6 �9 F Ix2, the  case a l ready  considered yields: 

[B | F'] = reSF,/F(X) U [a'] 

for some [a'] �9 H I ( F  ', ]ln(OL6)). Apply ing  the cores t r ic t ion m a p  to b o t h  sides of 

this  equat ion ,  we get by  the  p ro jec t ion  formula: 

2[B] = X U corF,/F([a']). 

Therefore,  if 2m = 1 mod  n, 

[B] = m X U corF,/g([a']), 

hence B ~_ B(x ,a )  for [a] -- m corF,/F([a']) �9 H l ( F , p ~ ( a 6 ) ) .  | 

In  a different direct ion,  we have the following resul t  on the  Galois  cohomology  

of the  twis ted  modules  pn(c~): 

PROPOSITION 28: Let  61,62 �9 F x. In  H2(F,/Zn| we have: 

Hi(F,  #.(61)) U Hi(F,  # . (62) )  C H i ( F ,  #n) U HI(F, ].tn(6162) ) 

(where the left-hand side is 

{ x U y :  x E Hl(F,#n(61)), y E Hl(F, ttn(62))}). 

Proof'. Assume first t ha t  61, 62, 6162 r F x2. For i = 1, 2, let  Fi = F(v /~)  C ['8 

and  let  ai  E Fi x be such t ha t  nFi/F(ai) = 1, so t ha t  [hi] E Hl(F,#n(6i)) .  If  

ai E F xn, t hen  [ai] = 0, hence [el] U [a2] = 0 E Hi(F,  #n) U H 1 (F,  it= (6162)). For  

the  res t  of the  proof,  we may  thus  assume ai # 4-1 for i = 1, 2. Let  

a l  - 1 a2 + 1 
u -  - -  E F 1  x and v - - -  E F t ,  

a l  + 1 a2 - 1 

so t h a t  
l + u  v + l  

- and a2 = �9 

a l  1 - u  v - 1  

Since nF,/F(a~) =- 1, i t  follows t h a t  u and v have t race  zero. Therefore,  u 2, v 2 C 

F x and  uv -1 E F(6v/~16~) x. Let  

1 - v 2 
- - . F  xn E Hl(F,  pn) [b] = 1 - u 2 
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and 

We claim that  

1 -[-UV - 1  

[c] = 1 - uv - I  

[ a l l  [J [a21 = [b] (.J [c] in  H2(F,/An~2(51~2)). 

Let M = F(v/~l, v/~2) C Fs. Since the degree of the extension M / F  is relatively 

prime to n, the restriction map 

reSM/F : H2(F, p$2(5162)) , H2(M, #$2(5162)) = H | 

is injective; therefore, it suffices to prove the claim over M. The identity 

{ l + u ; v ~ } = {  1 - v 2 . 1 + _ _ u v - l ~  

1 - u  v i u 2' 1 - u v - l J  

holds for symbols {a, b} in Milnor's K2; a proof is given in the following Lemma 

29. Applying the norm residue homomorphism K2M , H2(M, #~2) to both 

sides, we get 

[al] U [a21 = [b] U [c] in H2(M, #~2) = H2(M, pn@2(51~2)), 

completing the proof in the case where 51,52, 5152 ~ F • 2. If 51 or 52 E F • 2~ the 

proposition is obvious. If 5152 E F x2, we may use the same arguments as above, 

substituting F for F(~x/~-~16~), except if u -- i v .  In this case however, we have 
a +1 al = - 2 , hence [eli = [a2] • and therefore [al] U [a2] = 0. | 

LEMMA 29: For u, v ~ • E F • u ~ +v, the relation 

{ l + u . v + l } _ _ ,  = { 1 - - v  2. l + u v  - 1 } _  

1 - - u  v - - 1  1 u 2 ' l  uv -1 

holds in K2F. 

Proof: We have {1 - u; 1 + UU ~1} -~- {1 -- U; V} = {1 -- U; U + V}. On the other 

hand the basic relation {a; b} = {a; b - a} + {a - b; b} in K2 (see for example 

[9, p. 75]) implies that  

{1 - u ; u + v }  = {1 - u ; l + v }  - { - u - v ; l + v }  

= { 1 -  u;1 +v}  + {1 + v ; - u -  v}. 

Subtracting 0 = {1 + v; -v}  we get 

{ 1  - u; 1 + u v  - 1  } - { 1  + v; 1 + uv  -1  } = { 1  - -  u; 1 + v }  - { 1  - u; v } .  
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Replacing u, v by +u, +v, we get. four expressions which add to the wanted rela- 

tion. Another proof is to check the formula in the function field F(u, v) by using 

the exact sequence of Milnor for K2F(t) (see [10]) to show that 

{~§ ( 1-v2l  u 2'llTuv-1}uv -1 

lies in K2F(u), K2F and then to show that it is 0 by specialization at some 

places. | 

Remark: The Galois module #n plays a special r61e in the preceding proposition. 

Suppose that  61, 62, ~1, c2 E F x are such that 

]-tn(~l) e ~tn(62) = ~tn(C1) e ~n(C2), 

and that  the sets {1n(61), 1n(62)} and {#n(~l), #n(~2)} are disjoint (up to iso- 

morphism). If pn(8l) and #n(~2) are different from #n, then there is an extension 

/~ of F such that  

H l ( F ,  pn(61)) U gl ( /~ ,  #=(62)) g HI(F,#n(Cl))  U HI(/~, ttn(e2)). 

Indeed, after a biquadratic extension of F we may assume that 81, 62 E F x 2. Let 

then F be the iterated powerseries extension F((s))((t)). Then 

s" FXn Ut"  [ Pxn e HI([P,#n) U HI([;',IAn) 

has non-trivial residue. On the other hand, 

cO(Hi(k, pn(e)) C H~ = 0 

for nontrivial e, hence s �9 ~x~ U t �9 ~x~ cannot be a sum of cup-products of 

elements of Hi(/~, #n(ex)) and Hi(/~, ]~n(~2)). 

COROLLARY 30: Let n be an odd integer and let F be a field of characteristic 

relatively prime to n. Assume that #~ = Zn(r for some r E FX; then every 

central simple F-algebra split by a Galois extension of degree 2n with dihedral 

Galois group is cyclic. 

Proof: Let A be a central simple F-algebra split by a Galois extension L / F  

with dihedral Galois group of order 2n. The index of A then divides 2n. Since n 

is odd, we may decompose the Brauer class of A: 

[A] = a l  + a2 
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where a l  has index 1 or 2 and a2 has index dividing n. The element a l  is split 

by a cyclic extension C1/F of degree 1 or 2. If we show that  2[A] is split by a 

cyclic extension C2/F of degree dividing n, then a2 is also split by C2, hence A is 

split by the cyclic extension C1 | C2/F. Therefore, it suffices to show that  A | 

is cyclic. Let 5 E F • be a representative of the discriminant of L. Proposition 23 

shows that  L is a cyclic extension of F(v~) .  Choosing a Galois Z~-algebra 

structure of L over F(v/5), we may associate to L an element X E Hi(F, Zn(6)) 

by Proposition 24. Since A | F(x/~) is split by L, we have 

[A | F(x/~)] = reSF(vq)/F(X) U [a] in H2(F(x/5), ~n) 

for some [hi E HI(F(v/5), p , )  = H I ( F ( v ~ ) ,  #n(~)). Taking the corestriction of 

both sides, we get 

(14) 2[A] = X U [a'] in H2(F, #n), 

where [a'] = corv(vq)/F([a]) E Hi(F, #~(~)). Since #~ = Z~(r we have Zn(5) -- 

#n(r hence relation (14) yields: 

2[A] E Hl(F, pn(r U HI(F,#n(5)). 

From Proposition 28, it follows that 

2[A] = [b] U [c] 

for some [b] E Hi(F, #n) and some [c] E Hi(F, JAn(C)) : H I ( F ,  Zn). The element 

[c] then defines a cyclic extension of F which splits A | I 

We conclude by discussing the special features of the case where n = 3 

(assuming that  the characteristic of F is not 2 nor 3). Every cubic field ex- 

tension L of F is of the form F• and also of the form Fa: more precisely, if the 

discriminant of L / F  is represented by a E F x , then the field L| is cyclic 

over F(v/-a), hence L = F x for any X E Hi(F, Z3(a)) representing L | F(x/~).  

Since/A 3 = Z3(-3) ,  we may also view L = Fa for [a] = X E Hi(F, p3( -3a ) ) .  

PROPOSITION 31: Let K = F(x/~ ) be a quadratic field extension o f F  and let 

B be a central division K-algebra of degree 3 which admits involutions of the 

second kind leaving F elementwise invariant. Let also L be a cubic field extension 

of F with discriminant 6 and let X E Hi(F, Z3(6)) be such that L = F x. The 

algebra B contains an isomorphic image of L if and only if  B ~- B(X , a) (i.e. 
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[B] = X U [a] in H2(F, #3((~))) for some [a]e  Hi(F, #3(o~)). The algebra B then 

contains a cubic field extension L' : Fa of discriminant -3~6. Moreover, there 

exists an involution a such that L, L' C (B, 0)+. 

The algebra B always contains cubic field extensions L.,  L'. of discriminant 

-3 ,  ~ respectively, and carries an involution o. such that L. ,  L'. C (B, 0.)+. 

Proof The first part follows from Propositions 26 and 27. In order to prove 

that  B always contains extensions L. ,  L~. as stated, we use Proposition 28: let 

L be any cubic field extension of F contained in B; then, letting 6 C F x denote 

a representative of the discriminant of L/F,  we have 

B ~_ B(X, a) 

for some X �9 HI(F, Z3(6)) and some [a] �9 Hl(F,p.3(c~6)). Since Z3(6) = 

#3(-36) ,  it follows that 

[/3] �9 H1(F,#3(-36)) U HI(F, p3(e~8)), 

hence Proposition 28 shows that B -~ B ( x . , a . )  for some X. �9 HI(F,#3) -- 

Hi(F, Z3(-3) )  and some [a.] �9 Hi(F, #3(-3ol)) -- Hi(F, Z3(c~)). We then let 

L. = Fx. and L'. = Fa.. | 

Note that ,  according to condition (e) of Theorem 16, the involution 0.  is 

distinguished; the proposition above thus yields another proof of the existence of 

distinguished involutions. 

Note also that the pair ( -3 ,  c~) is the only pair of discriminants that occurs for 

every central division F(v~)-a lgebra  of degree 3 which admits involutions of the 

second kind: given a pair (~1, e2) with ele2 �9 (-3c~) �9 F x 2, the remark following 

Proposition 25 together with Proposition 27 shows that there is an algebra B 

over some extension of F which does not contain any cubic separable extension 

of discriminant sl or e2. For example, there are algebras B which do not contain 

a cyclic cubic field extension, i.e. a cubic field extension of discriminant 1, as 

already observed in the example at the end of section 4. 

Since 3-fold Pfister forms are classified up to isometry by their Arason invariant: 

Ar( ((a, b, c>> ) = (a. F • [.J (b. F x2) U (c. F x2) �9 g3(F, p2) 

(see [5]), Theorem 15 (together with Proposition 25) yields a classification of 

central simple algebras of degree 3 with involution by cohomological invariants: 
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COROLLARY 32: Triples (K, B, a) where K = F(v/-~) is a quadratic dtale F- 

algebra, B is a central simple K-algebra of degree 3 and a is an involution of the 

second kind on B leaving F elementwise invariant, are classified over F by the 

three cohomological invariants: 

f l ( K , B , a )  = c~. F • e HI(F ,#2 ) ,  

g2(K, B, a) = [B] C H2(F, #3(a)),  

f3(K,  B, a) = Ar(Tr(B, a))  �9 H3(F, #2). 

Proob Indeed we have seen that  f l  determines K,  g2 determines B and f3 

determines the involution or. | 

Remark: Let Ko/Fo be a separable quadratic field extension and let B0 be a 

central division K0-algebra of degree 3 which admits an involution of the second 

kind. Let F = Fo((t)), K = Ko((t))  and B = Bo((t)). Let a be any involution 

on B, not necessarily defined over B0. We claim that  the second residue ~t(Qo) 

is always trivial, i.e. Qo is induced from F0. A cubic 6tale F-subalgebra L of 

B is either unramified or totally ramified, i.e. L = F [ X ] / ( X  3 - ut) for u E Fo x . 

Thus in both  cases the discriminant of L is a class defined over Fo. On the 

other hand, an element A E L such that  nL/F(.~) is a square in Fff must be a 

unit in Fo[[t]]. This, together with Proposition 11, implies that  ~t(Qo) = 0. I t  

follows that  the invariant f3(B, a) cannot in general be arbitrary. In particular 

the three invariants f l ,  g2 and f3 are not independent. A corresponding question 

for invariants of exceptional Jordan algebras is discussed in [18]. 

R e f e r e n c e s  

[1] A. A. Albert, Structure of Algebras, Colloquium Publ. 24, American Mathematical 

Society, Providence, R.I., 1939. 

[2] A. A. Albert, On involutorial associative division algebras, Scripta Mathematica 

26 (1963), 309-316. 

[3] J. K. Arason and R. Elman, Nilpotence in the Witt ring, American Journal of 

Mathematics 113 (1991), 861-875. 

[4] E. Bayer-Fluckiger and H. W. Lenstra Jr., Forms in odd-degree extensions and 

self-dual normal bases, American Journal of Mathematics 112 (1990), 359-373. 

[5] R. Elman and T. Y. Lam, Pfister forms and K-theory of fields, Journal of Algebra 

23 (1972), 181-213. 



340 D.E. HAILE, M-A. KNUS, M. ROST AND J-P. TIGNOL Isr. J. Math. 

[6] D. E. Haile and M.-A. Knus, On division algebras of degree 3 with involutions, 

Journal of Algebra (to appear). 

[7] N. 3acobson, A note on hermitian forms, Bulletin of the American Mathematical 

Society 50 (1944), 645-648. 

[8] N. Jacobson, Structure and Representations of Jordan Algebras, AMS Colloquium 

Publ. Vol. 39, American Mathematical Society, Providence, R.I., 1968. 

[9] I. Kersten, Brauergruppen von K6rpern, Aspekte der Mathematik, Vieweg, 

Braunschweig, 1990. 

[10] J. Milnor, Algebraic K-theory and quadratic forms, Inventiones mathematicae 7 

(1970), 318-344. 

[11] H. P. Petersson and M. L. Racine, Springer forms and the first Tits construction of 

exceptional Jordan division algebras, manuscripta mathematica 45 (1984), 249- 

272. 

[12] H. P. Petersson and M. L. Racine, The toral Tits process of Jordan algebras, 

Abhandlungen aus dem Mathematischen Seminar der Universit~it Hamburg 54 

(1984), 251-256. 

[13] H. P. Petersson and M. L. Racine, Cubic subfields of exceptional simple Jordan 

algebras, Proceedings of the American Mathematical Society 91 (1984), 31-36. 

[14] H. P. Petersson and M. L. Racine, Reduced models of Albert algebras, Mathema- 

tische Zeitschrift, to appear. 

[15] L. H. Rowen and D. J. Saltman, Dihedral algebras are cyclic, Proceedings of the 

American Mathematical Society 84 (1982), 162-164. 

[16] W. Scharlau, Quadratic and Hermitian Forms, Grundlehren Math. Wiss. 270, 

Springer-Verlag, Berlin, 1985. 

[17] J-P. Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics 5, Springer- 

Verlag, Berlin, 1964 and 1994. 

[18] 3-P. Serre, Cohomologie galoisienne: progr@s et probl~mes, S@minaire Bourbaki 

(1993-1994), expos@ 783. 

[19] T. A. Springer, Oktaven, Jordan-Algebren und Ausnahmegruppen, Lecture Notes, 

GSttingen, 1963. 


